Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism.

نویسندگان

  • Melanie Gertz
  • Frank Fischer
  • Giang Thi Tuyet Nguyen
  • Mahadevan Lakshminarasimhan
  • Mike Schutkowski
  • Michael Weyand
  • Clemens Steegborn
چکیده

Sirtuins are protein deacetylases regulating metabolism and stress responses. The seven human Sirtuins (Sirt1-7) are attractive drug targets, but Sirtuin inhibition mechanisms are mostly unidentified. We report the molecular mechanism of Sirtuin inhibition by 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide (Ex-527). Inhibitor binding to potently inhibited Sirt1 and Thermotoga maritima Sir2 and to moderately inhibited Sirt3 requires NAD(+), alone or together with acetylpeptide. Crystal structures of several Sirtuin inhibitor complexes show that Ex-527 occupies the nicotinamide site and a neighboring pocket and contacts the ribose of NAD(+) or of the coproduct 2'-O-acetyl-ADP ribose. Complex structures with native alkylimidate and thio-analog support its catalytic relevance and show, together with biochemical assays, that only the coproduct complex is relevant for inhibition by Ex-527, which stabilizes the closed enzyme conformation preventing product release. Ex-527 inhibition thus exploits Sirtuin catalysis, and kinetic isoform differences explain its selectivity. Our results provide insights in Sirtuin catalysis and inhibition with important implications for drug development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure-based Mechanism of ADP-ribosylation by Sirtuins*

Sirtuins comprise a family of enzymes found in all organisms, where they play a role in diverse processes including transcriptional silencing, aging, regulation of transcription, and metabolism. The predominant reaction catalyzed by these enzymes is NAD(+)-dependent lysine deacetylation, although some sirtuins exhibit a weaker ADP-ribosyltransferase activity. Although the Sir2 deacetylation mec...

متن کامل

A new facet of ADP-ribosylation reactions: SIRTs and PARPs interplay.

Nicotinamide Adenine Dinucleotide (NAD⁺) is known mainly as coenzyme of redox reactions for energy transduction and is consumed as substrate in regulatory reactions removing nicotinamide and producing ADP-ribose. Several families of ADP-ribose synthesizing enzymes use NAD⁺ as substrate and control processes like DNA repair, replication and transcription, chromatin structure, the activity of G-p...

متن کامل

Sirtuin 1 inhibition delays cyst formation in autosomal-dominant polycystic kidney disease.

Autosomal-dominant polycystic kidney disease (ADPKD) is caused by mutations in either PKD1 or PKD2 and is characterized by the development of multiple bilateral renal cysts that replace normal kidney tissue. Here, we used Pkd1 mutant mouse models to demonstrate that the nicotinamide adenine dinucleotide-dependent (NAD-dependent) protein deacetylase sirtuin 1 (SIRT1) is involved in the pathophys...

متن کامل

Structures, Substrates, and Regulators of Mammalian Sirtuins – Opportunities and Challenges for Drug Development

Sirtuins are NAD(+)-dependent protein deacetylases regulating metabolism, stress responses, and aging processes. Mammalia have seven Sirtuin isoforms, Sirt1-7, which differ in their substrate specificities and subcellular localizations. The physiological functions of Sirtuins make them interesting therapeutic targets, which has stimulated extensive efforts on development of small molecule Sirtu...

متن کامل

Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases.

Since the discovery of NAD-dependent deacetylase activity of the silent information regulator-2 (SIR2) family ('sirtuins'), many exciting connections between protein deacetylation and energy metabolism have been revealed. The importance of sirtuins in the regulation of many fundamental biological responses to various nutritional and environmental stimuli has been firmly established. Sirtuins ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 30  شماره 

صفحات  -

تاریخ انتشار 2013